random pt2.
In ancient history, the concepts of chance and randomness were intertwined with that of fate. Many ancient peoples threw dice to determine fate, and this later evolved into games of chance. Most ancient cultures used various methods of divination to attempt to circumvent randomness and fate.[3][4]
The Chinese were perhaps the earliest people to formalize odds and chance 3,000 years ago. The Greek philosophers discussed randomness at length, but only in non-quantitative forms. It was only in the sixteenth century that Italian mathematicians began to formalize the odds associated with various games of chance. The invention of the calculus had a positive impact on the formal study of randomness. In the 1888 edition of his book The Logic of Chance John Venn wrote a chapter on "The conception of randomness" which included his view of the randomness of the digits of the number Pi by using them to construct a random walk in two dimensions.[5]
The early part of the twentieth century saw a rapid growth in the formal analysis of randomness, as various approaches to the mathematical foundations of probability were introduced. In the mid- to late-twentieth century, ideas of algorithmic information theory introduced new dimensions to the field via the concept of algorithmic randomness.
Although randomness had often been viewed as an obstacle and a nuisance for many centuries, in the twentieth century computer scientists began to realize that the deliberate introduction of randomness into computations can be an effective tool for designing better algorithms. In some cases such randomized algorithms outperform the best deterministic methods.
random.
Randomness has somewhat disparate meanings as used in several different fields. It also has common meanings which may have loose connections with some of those more definite meanings. The Oxford English Dictionary defines "random" thus:
Having no definite aim or purpose; not sent or guided in a particular direction; made, done, occurring, etc., without method or conscious choice; haphazard.
Closely connected, therefore, with the concepts of chance, probability, and information entropy, randomness implies a lack of predictability. Randomness is a concept of non-order or non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination.
The fields of mathematics, probability, and statistics use formal definitions of randomness. In mathematics, a random variable is a way to assign a value to each possible outcome of an event. In probability and statistics, a random process is a repeating process whose outcomes follow no describable deterministic pattern, but follow a probability distribution, such that the relative probability of the occurrence of each outcome can be approximated or calculated. For example, the rolling of a fair six-sided die in neutral conditions may be said to produce random results, because one cannot know, before a roll, what number will show up. However, the probability of rolling any one of the six rollable numbers can be calculated.
The term is often used in statistics to signify well-defined statistical properties, such as a lack of bias or correlation. Monte Carlo Methods, which rely on random input, are important techniques in science, as, for instance, in computational science.[1] Random selection is an official method to resolve tied elections in some jurisdictions[2] and is even an ancient method of divination, as in tarot, the I Ching, and bibliomancy. Its use in politics is very old, as office holders in Ancient Athens were chosen by lot, there being no voting.